Pore Determinants of KCNQ3 K+ Current Expression
نویسندگان
چکیده
منابع مشابه
A pore residue of the KCNQ3 potassium M-channel subunit controls surface expression.
KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are the principal subunits underlying the potassium M-current, which exerts a strong control on neuronal excitability. KCNQ3 subunits coassemble with KCNQ2 to form functional heteromeric channels that are specifically transported to the axonal initial segment and nodes of Ranvier. In contrast, there is no evidence for functional homomeric KCNQ3 channels in neuron...
متن کاملReconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K(+) channels that underlie the neuronal M current.
Channels from KCNQ2 and KCNQ3 genes have been suggested to underlie the neuronal M-type K(+) current. The M current is modulated by muscarinic agonists via G-proteins and an unidentified diffusible cytoplasmic messenger. Using whole-cell clamp, we studied tsA-201 cells in which cloned KCNQ2/KCNQ3 channels were coexpressed with M(1) muscarinic receptors. Heteromeric KCNQ2/KCNQ3 currents were mod...
متن کاملRegulation of KCNQ2/KCNQ3 Current by G Protein Cycling
Receptor-mediated modulation of KCNQ channels regulates neuronal excitability. This study concerns the kinetics and mechanism of M1 muscarinic receptor-mediated regulation of the cloned neuronal M channel, KCNQ2/KCNQ3 (Kv7.2/Kv7.3). Receptors, channels, various mutated G-protein subunits, and an optical probe for phosphatidylinositol 4,5-bisphosphate (PIP2) were coexpressed by transfection in t...
متن کاملThe Role of the Carboxyl Terminus Helix C-D Linker in Regulating KCNQ3 K+ Current Amplitudes by Controlling Channel Trafficking
In the central and peripheral nervous system, the assembly of KCNQ3 with KCNQ2 as mostly heteromers, but also homomers, underlies "M-type" currents, a slowly-activating voltage-gated K+ current that plays a dominant role in neuronal excitability. KCNQ3 homomers yield much smaller currents compared to KCNQ2 or KCNQ4 homomers and KCNQ2/3 heteromers. This smaller current has been suggested to resu...
متن کاملMolecular determinants of differential pore blocking of kidney CLC-K chloride channels.
The highly homologous Cl(-) channels CLC-Ka and CLC-Kb are important for water and salt conservation in the kidney and for the production of endolymph in the inner ear. Mutations in CLC-Kb lead to Bartter's syndrome and mutations in the small CLC-K subunit barttin lead to Bartter's syndrome and deafness. Here we show that CLC-Ka is blocked by the recently identified blocker 2-(p-chlorophenoxy)-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2012
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.04.018